Abaqus Volume II: I–Z Manuel d'utilisateur Page 1

Naviguer en ligne ou télécharger Manuel d'utilisateur pour Logiciel Abaqus Volume II: I–Z. ABAQUS Volume II: I–Z User Manual [de] Manuel d'utilisatio

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 628
  • Table des matières
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 0
Keywords Reference ManualKeywords Reference Manual
Volume II: I–Z
Version 6.6
Vue de la page 0
1 2 3 4 5 6 ... 627 628

Résumé du contenu

Page 1 - Version 6.6

Keywords Reference ManualKeywords Reference ManualVolume II: I–ZVersion 6.6

Page 2

CONTENTSD*D ADDED MASS 4.1*DAMAGE EVOLUTION 4.2*DAMAGE INITIATIO N 4.3*DAMAGE STABILIZATION 4.4*DAMPING 4.5*DASHPOT 4.6*DEBOND 4.7*DECHARGE 4.8*DECURR

Page 3 - Volume II

*JOINT EL ASTICITY5. Temperature.6. First field variable.7. Second field variable.8. Third field variable.Subsequent lines (only needed if the DEPENDENCI

Page 4

*JOINT EL ASTICITY7. Temperature.8. First field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than one):1. S

Page 5 - 5:32:43 2006

*JOINT EL ASTICITY7. First field variable.8. Second field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than

Page 6

*JOINT PL ASTICITY10.3*JOINT PLASTICITY: Specify plas tic properties for elastic-plastic joint eleme nts.This option is used to define the plastic beha

Page 7 - Contents — Volume I

*JOINT PL ASTICITY7. First field variable.8. Second field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than

Page 8

*JOINT PL ASTICITYSubsequent lines (only needed if the DEPENDENCIES parameter has a value greater than three):1. Fourth field variable.2. Etc., up to e

Page 10 - CONTENTS

*JOINTED MATERIAL10.4*JOINTED MATERIAL: Specify the jointed material model.This option is used to define a failure surface and the flow parameters for a

Page 11

*JOINTED MATERIALData lines defining failure surface and flow parameters (SHEAR RETENTION omitted):First line:1. Angle of friction, , for this system .

Page 12

*JOULE HEAT FRACTION10.5*JOULE HEAT FRACTION: Define the fraction of electric energy released as heat.This option is used to specify the fraction of di

Page 13

CONTENTSE*EL FILE 5.1*EL PRINT 5.2*ELASTIC 5.3*ELCOPY 5.4*ELECTRICAL CONDUC TIVITY 5.5*ELEMENT 5.6*ELEMENT MATRIX OUTPUT 5.7*ELEMENT O UTPUT 5.8*ELEME

Page 15

K11. KABAQUS Version 6.1 Module:ID:Printed on:

Page 17

*KAPPA11.1*KAPPA: Specify the material parametersand for mass diffusion driven bygradients of temperature and equivalent pressure stress, respectively

Page 18

*KAPPASubsequent lines (only needed if the DEPENDENCIES parameter has a value greater than five):1. Sixth field variable.2. Etc., up to eight field varia

Page 19

*KINEMATIC11.2*KINEMATIC: Define a kinematic coupling constraint.This option is used to define a kinematic coupling constraint. It must be used in conju

Page 21

*KINEMATIC COUPLING11.3*KINEMATIC COUPLING: Constrain all or specific degrees of freedom of a set ofnodes to the rigid body motion of a reference node.

Page 22

*KINEMATIC COUPLING3. Last degree of freedom constrained. If this field is left blank, the degree of freedom specifiedin the second field will be the onl

Page 23

L12. LABAQUS Version 6.1 Module:ID:Printed on:

Page 24

CONTENTS*FILE O UTPUT 6.8*FILM 6.9*FILM PROPERTY 6.10*FILTER 6.11*FIXED MASS SCALING 6.12*FLOW 6.13*FLUID BEHAVIOR 6.14*FLUID BULK MODU LUS 6.15*FLUID

Page 26

*LATENT HEAT12.1*LATENT H EAT: Specify latent heats.This option is used to specify a material’s latent heat.Products: ABAQUS/Standard ABAQUS/ExplicitT

Page 28

*LOAD CASE12.2*LOAD CASE: Begin a load case definition for multiple load case analysis.This option is used to begin each load case definition.Product: A

Page 30

M13. MABAQUS Version 6.1 Module:ID:Printed on:

Page 32

*MAP SOLUTION13.1*MAP SOLUTION: Map a solution from an old mesh to a new mesh.This option is used to transfer solution variables from an earlier analy

Page 33

*MAP SOLUTION2. Value of the translation to be applied in the Y-direction.3. Value of the translation to be applied in the Z-direction.Enter values of

Page 34

*MASS13.2*MASS: Specify a point mass.This option is used to define lumped m ass values associated with MASS elem ents.For ABAQUS/Standard analyses this

Page 35

CONTENTSH*HEADING 8.1*HEAT GENERATION 8.2*HEAT TRANSFER 8.3*HEATCAP 8.4*HOURGLASS STIFFNESS 8.5*HYPERELASTIC 8.6*HYPERFOAM 8.7*HYPOELASTIC 8.8*HYSTERE

Page 36

*MASSData line to define the mass magnitude:First (and only) line:1. Mass magnitude. Mass, not weight, should be given.ABAQUS does not use any specific

Page 37

*MASS DIFFUSION13.3*MASS DIFFUSION: Transient or steady-state uncoupled mass diffusion analysis.This option is used to control uncoupled transient or

Page 38

*MASS DIFFUSIONIf a value is given, ABAQU S/Standard will use the minimum of the given value and 0.8 timesthe suggested initial time step.4. Maximum t

Page 39

*MASS FLOW RATE13.4*MASS FLOW RATE: Specify fluid mass flow rate in a heat transfer analysis.This option is used to specify the mass flow rate per unit a

Page 40

*MASS FLOW RATEData lines to define mass flow rates:First line:1. Node number or node set label.2. Mass flow rate per unit area in the x-direction (units

Page 41

*MATERIAL13.5*MATERIAL: Begin the definition of a material.This option is used to indicate the start of a mater ial definition.Products: ABAQUS/Standard

Page 42

*MATERIALSet STRAIN RATE REGULARIZATION=LINEAR to use a linear regularization for strainrate-dependent material data.There are no data lines associate

Page 43

*MATRIX13.6*MATRIX: Read in the stiffness or mass matrix for a linear user element.This option can be used only in conjunction with the*USER ELEMENT,

Page 45

*MATRIX ASSEMBLE13.7*MATRIX ASSEMBLE: Define stiffness or mass matrices for a par t of the model.This option can be used to identify a stiffness or a m

Page 46 - INCIDENT WAVE INTERACTION

CONTENTSContents — Volume III*IMPEDANCE 9.1*IMPEDANCE PROPERTY 9.2*IMPERFECTION 9.3*IMPORT 9.4*IMPORT CONTROLS 9.5*IMPORT ELSET 9.6*IMPORT NSET 9.7*IN

Page 48

*MATRIX INPUT13.8*MATRIX INPUT: Read in a matrix for a part of the model.This option can be used to input a matrix in sparse format.Product: ABAQUS/St

Page 49

*MATRIX INPUT4. Degree of freedom number for column node.5. Matrix entry.Give data to define a symmetric matrix in lower triangular, upper triangular,

Page 50 - INCIDENT WAVE PROPERTY

*MEMBRANE SECTION13.9*MEMBRANE SECTION: Specify section properties for membrane elements.This option is used to assign section properties to a set of

Page 51

*MEMBRANE SECTIONNODAL THICKNESSInclude this parameter to indicate that the membrane thickness should not be read from the data linesbut should be int

Page 52

*MODAL DAMPING13.10*MODAL DAMPING: Specify damping for modal dynamic analysis.This option is used to specify damping for mode-ba sed procedures. It is

Page 53

*MODAL DAMPINGanalysis,” Section 6.3.11 of the ABAQUS Analysis User’s Manual). The value of the dampingconstant, s, that m ultiplies the internal forc

Page 54

*MODAL DAMPINGData lines to define structural damping by specifying mode numbers (STRUCTURAL andDEFINITION=MODE NUMBERS):First line:1. Mode number of t

Page 56

*MODAL DYNAMIC13.11*MODAL DYNAMIC: Dynamic time history analysis using modal superposition.This option is used to provide dy namic time history respon

Page 57

CONTENTSL*LATENT HEAT 12.1*LOAD CASE 12.2M*MAP SOLUTION 13.1*MASS 13.2*MASS DIFFUSION 13.3*MASS FLOW RATE 13.4*MATERIAL 13.5*MATRIX 13.6*MATRIX ASSEMB

Page 59

*MODAL FILE13.12*MODAL FILE: Write generalized coordinate (modal amplitude) data or eigendata tothe results file during a mode-based dynamic or eigenva

Page 61

*MODAL OUTPUT13.13*MODAL OUTPUT: Write generalized coordinate (modal amplitude) data to the outputdatabase during a mode-based dynamic or complex eige

Page 63

*MODAL PRINT13.14*MODAL PRINT: Print generalized coordinate (modal amplitude) data during a mode-based dynamic procedure.This option is used during mo

Page 65

*MODEL CHANGE13.15*MODEL CHANGE: Remove or reactivate elements and contact pairs.This option is used to rem ove or reactivate elem ents or contact pai

Page 66

*MODEL CHANGEData lines to remove/reactivate elements (TYPE=ELEMENT):First line:1. Give a list of element numbers and/or element set names that are in

Page 67

*MOHR COULOMB13.16*MOHR COULOMB: Spe cify the Mohr-Coulomb plasticity model.This option is used to define the yield surface and flow potential parameter

Page 68

CONTENTS*NODE FILE 14.9*NODE OUTPUT 14.10*NODE PRINT 14.11*NODE RESPONSE 14.12*NONSTRUCTURAL MASS 14.13*NORMAL 14.14*NSET 14.15O*ORIENTATION 15.1*ORNL

Page 69

*MOHR COU LOMB2. Dilation angle, , at high confining pr essure in the p– plane. Give the value in degrees.3. Temperature.4. First field variable.5. Seco

Page 70

*MOHR COU LOMB HARDENING13.17*MOHR COULOMB HARDENING: Specify hardening for the Mohr-Coulomb plasticitymodel.This option is used to define piecewise li

Page 71

*MOHR COULO MB HARDENING2. Etc., up to eight field variables per line.Repeat this set of data lines as often as necessary to define the dependence of th

Page 72

*MOISTURE SWELLING13.18*MOISTURE SWELLIN G: De fine moisture-driven swe lling.This option is used to define the moistu re-driven swelling of the solid s

Page 74

*MOLECULAR WEIGHT13.19*MOLECULAR WEIGHT: Define the molecular weight of an ideal gas species.This option is used to define the molecular weight of an id

Page 76

*MONITOR13.20*MONITOR: Define a degree of freedom to monitor.This option is used to choose a node and degree of freedom to monitor the progress of the

Page 78

*MOTION13.21*MOTION: Specify motions as a predefined field.This option is used to specify motions of node sets or individual nodes during cavity radia t

Page 79

CONTENTS*PRINT 16.28*PSD-DEFINITION 16.29R*RADIATE 17.1*RADIATION FILE 17.2*RADIATION OUTPUT 17.3*RADIATION PRINT 17.4*RADIATION SYM METRY 17.5*RADIAT

Page 80

*MOTIONis given with TYPE=VELOCIT Y, the default is a STEP function f or cavity radiation analysis anda RAMP function for steady-state transport analy

Page 81

*MOTIONThe following data are required only for three-dimensional cases:5. Global z-component of point a on the axis of rotation.6. Global x-component

Page 83

*MPC13.22*MPC: Define multi-point constraints.This option is used to impose constraints between different degrees of freedom of the model.Products: ABA

Page 84

*MPCthe following nodes on this line. Any number of continuation lines are allowed. Exactly 15 nodes or nodesets must be given on each line except the

Page 85

*MULLINS EFFECT13.23*MULLINS EFFECT: Specify Mullins ef fect material parameters for elastomers.This option is used to define material constants for th

Page 86 - INTEGRATED OUTPUT SECTION

*MULLINS EFFECTcannot be specified if both the R and M parameters are also specified (use the data line instead tospecify all three parameters). If this

Page 87

*MULLINS EFFECTData lines to define the material constants if both the TEST DATA INPUT and USER parametersare omitted:First line:1. .2..3.(If this entr

Page 89

*M113.24*M1: Define the first bending moment behavior of beams.This option is used to de fine the first bending moment behavior of beams. It can be used o

Page 90

CONTENTS*SIMPEDANCE 18.17*SIMPLE SHEAR TEST D ATA 18.18*SLIDE LINE 18.19*SLOAD 18.20*SOILS 18.21*SOLID SECTION 18.22*SOLUBILITY 18.23*SOLUTION TECH NI

Page 91

*M1Subsequent lines (only needed if the D EPENDENCIES parameter has a value greater than six):1. Seventh field variable.2. Etc., up to eight field varia

Page 92

*M213.25*M2: Define the second bending moment behavior of beams.This option is used to define the second bending moment behavior of beams. It can be use

Page 93

*M2Subsequent lines (only needed if the D EPENDENCIES parameter has a value greater than six):1. Seventh field variable.2. Etc., up to eight field varia

Page 94

N14. NABAQUS Version 6.1 Module:ID:Printed on:

Page 96

*NCOPY14.1*NCOPY: C reate nodes by copying.This option is used to copy a node set to create a new node set.Products: ABAQUS/Standard ABAQUS/ExplicitTy

Page 97

*NCOPYOptional parameters:MULTIPLEThis parameter is used with the SHIFT parameter to define the number of ti mes the rotation shouldbe applied. The def

Page 98

*NCOPY2. Y-coordinate of the first poi nt definin g the reflection plane.3. Z-coordinate of the first point defining the reflection plane.4. X-coordinate of

Page 99

*NCOPYbaFigure 14.1–1*NCOPY, SHIFT option.a, b define the lineNew SetabOld setFigure 14.1–2*NCOPY, REFLECT=LINE option.14.1–4ABAQUS Version 6.1 Modul

Page 100

*NCOPYa, b, c define the mirror planeNew SetOld SetacbFigure 14.1–3*NCOPY, REFLECT=MIRROR option.New Set Old seta is the point through which the no

Page 101

CONTENTST*TEMPERATU RE 19.1*TENSILE FAILURE 19.2*TENSION STIFFENING 19.3*THERMAL EXPANSION 19.4*TIE 19.5*TIME POINTS 19.6*TORQUE 19.7*TORQUE PRINT 19.

Page 102

*NCOPYLLpolenodea old set new setFigure 14.1–5*NCOPY, POLE option.14.1–6ABAQUS Version 6.1 Module:ID:Printed on:

Page 103

*NFILL14.2*NFILL: Fill in nodes in a region.This option is used to generate nodes for a region of a m esh by filling in nodes between two bounds.Produc

Page 104

*NFILLData lines to fill in nodes between two bounds:First line:1. Name of the node set defining the first bound of the re gion.2. Name of the node set d

Page 105 - Printed on:

*NGEN14.3*NGEN: Generate incremental nodes.This option is used to generate nodes incrementally.Products: ABAQUS/Standard ABAQUS/ExplicitType: Model da

Page 106

*NGEN6. Second coordinate of the extra point (if required).7. Third coordinate of the extra point (if required).The following entries are used only fo

Page 107

*NMAP14.4*NMAP: Map nodes from one coordinate system to another.This option is used to map a set of nodes from one coordinate system to another.Produc

Page 108

*NMAPby the distance between points a and b. The line between points a and b defines the position.For every value ofthe -coordinate is defined in a plan

Page 109

*NMAP3. Y-coordinate of the point to which this control node is to be mapped.4. Z-coordinate of the point to which this control node is to be mapp ed.

Page 110

*NMAP(R, θ, φ)φXYabc^Z^^zyxzyxb(θ = 0)(φ = 0)θθR(R, θ, Z)(θ = 0)rectangular skewed Cartesian spher

Page 111

*NO COMPRESSION14.5*NO C OMPRESSION: Introduce a compressive failure theor y (tension onlymaterials).This option is used to m odify the elasticity defi

Page 115

*NO TENSION14.6*NO TENSION: Introduce a tension failure theory (compression only material).This option is used to m odify the elasticity definition so

Page 117

*NODAL THICKNESS14.7*NODAL THICKNESS: Define shell or membrane thickness at nodes.This option is used to define variabl e shell or membrane thicknesses

Page 118

*NODAL THICKNESSData lines when the GENERATE parameter is omitted:First line:1. Node set label or node number.2. Thickness.Repeat this data line as of

Page 119

*NODE14.8*NODE: Specify nodal coordinates.This option is used to define a node directly by specify ing its coordinates. Nodal coordinates given in this

Page 120

*NODE4. Third coordinate of the node.5. First direction cosine of the normal at the no de (optional).6. Second direction cosine of the normal at the n

Page 121

*NODE FILE14.9*NODE FILE: Define results file requests for nodal data.This option is used to choose the nodal variables that will be written to the resu

Page 122

*NODE FILEThe default value is LAST MODE=N,whereN is the num ber of modes extracted. If theMODE param eter is used, the default value is LA ST M ODE=

Page 123

*NODE OUTPUT14.10*NODE OUTPUT: Define output database requests for nodal data.This option is used to write nodal variables to the output database. It m

Page 124

I9. IABAQUS Version 6.1 Module:ID:Printed on:

Page 125

*NODE OUTPUTOptional parameter:VA R I A B L ESet VARIABLE=ALL to indicate that all nodal variables applicable to this procedure and materialtype shoul

Page 126

*NODE PRINT14.11*NODE PRINT: Define print requests for nodal variables.This option is used to provide tabular printed output of nodal variables (displa

Page 127

*NODE PRINToutput is required. The default is MODE=1. S ee also the LAST MODE parameter. Whenperforming a*FREQUENCY analysis, the normalization will f

Page 128 - Second line:

*NODE RESPONSE14.12*NODE RESPONSE: Define nodal responses for design sensitivity analysis.This option is used to write nodal response sensitivities to

Page 130

*NONSTRUCTURAL MASS14.13*NONSTRUCTURAL MASS: Specify mass contribution to the model fromnonstructural features.This option is used to include the mass

Page 131

*NONSTRUCTURAL MASSSet DISTRIBUTION=VOLUME PROPORTIONAL to distribute the total nonstructural massamong the members of the element set region in propo

Page 132 - MASS DIFFUSION

*NORMAL14.14*NORMAL: Specify a par ticular normal direction.This option is used to define alternative nodal normals for elements. In an ABAQ US/Standar

Page 134

*NSET14.15*NSET: Assign nodes to a node set.This option assigns nodes to a node set.Products: ABAQUS/Standard ABAQUS/ExplicitType: Model or history da

Page 136

*NSETINTERNALABAQUS/CAE uses the INTERNAL param eter to identify sets that are created internally. TheINTERNAL param eter is used only in models define

Page 137

O15. OABAQUS Version 6.1 Module:ID:Printed on:

Page 139

*ORIENTATION15.1*ORIENTATION: Define a local axis system for material or element propertydefinition, for kinematic coupling constraints, for free direct

Page 140

*ORIENTAT IONSYSTEMSet SYSTEM=RECTANGULAR (default) to define a rectangular Cartesian system by the threepoints a, b,andc shown in Figure 15.1–1. Point

Page 141

*ORIENTATIONData lines to define an orientation using DEFINITION=NODES:First line:1. Node number of the node at point a.2. Node number of the node at p

Page 142 - MATRIX INPUT

*ORIENTAT IONYZSYSTEM = CYLINDRICALSYSTEM = SPHERICALZ (meridional)baY (circumferential) X (radial) X (radial)Y (tangential)ZbaX (global)YZX

Page 143

*ORNL15.2*ORNL: Specify constitutive model developed by Oak Ridge National Laboratory.This option is used to provide plasticity and creep calculations

Page 145

*OUTPUT15.3*OUTPUT: Define output requests to the output database.This option is used to write contact, element, energy, nodal, or diagnostic output to

Page 146

*IMPEDANCE9.1*IMPEDANCE: Define impedances for acoustic analysis.This option is used to provide boundary impedances or nonreflecting boundaries for acou

Page 147

*OUTPUTHISTORYInclude this parameter to ind icate that the output requests used in conjunction with the*OUTPUToption will be written to the outp ut da

Page 148

*OUTPUTtypes except*DYNAMIC and*MODAL DYNAMIC; output will be written every 10 incrementsfor these procedure types.The FREQUENCY, NUMBER INTERVAL, TIM

Page 149

*OUTPUTUsing*OUTPUT in an ABAQUS/Explicit analysisReferences:•“Output to the output database,” Section 4.1.3 of the ABAQUS Analysis User’s Manual•“ABA

Page 150

*OUTPUTTIME POINTSSet this parameter equal to the name of the*TIME POINTS option that defines the tim e pointsat which output is to be written. If this

Page 151

*OUTPUTVA R I A B L ESet VARIABLE=ALL to indicate that all variables applicable to this procedure and material typeshould be written to the output dat

Page 152

P, Q16. P, QABAQUS Version 6.1 Module:ID:Printed on:

Page 154

*PARAMETER16.1*PARAMETER: Define parameters for input parametrization.This option is used to define param eters that can be used in place of ABA QUS inp

Page 156

*PARAMETER DEPENDENCE16.2*PARAMETER DEPENDENCE: Define dependence table for tabularly dependentparameters.This option is used to define the dependence t

Page 157

*IMPEDANCEOptional parameter:OPSet OP=MOD (default) to modify existing impe dances or to define addi tional impedances.Set OP=NEW if all existing im pe

Page 159

*PARAMETER SHAPE VARIATION16.3*PARAMETER SHAPE VARIATION: Define parametric shape variations.This option is used to define parametric shape variations.P

Page 160

*PARAMETER SHAPE VARIATIONOptional parameters if the FILE parameter is used:INCSet this parameter equal to the increm ent number (in the analysis whos

Page 161

*PARAMETER SHAPE VARIATION(X,Y,Z)Rectangular Cartesian(SYSTEM=R)(default)RθCylindrical(SYSTEM=C)(θ and φ are given in degrees)(R,θ,φ)θφSpherical(SYSTE

Page 163

*PART16.4*PART: Begin a par t definition.This option is used to begin a part definiti on. It must be used in conjunction with the*ASSEMBLY,*ENDPART, and

Page 165

*PERIODIC16.5*PERIODIC: Define periodic symmetry for a cavity radiation heat transfer analysis.This option is used to define cavity symmetry by periodic

Page 166

*PERIODICis assumed to apply both in the positive and neg ative directions of the distance vector. The defaultvalue is NR=2.Data line to define periodi

Page 167

*PERIODICn = 2x-2d-dd2dyabFigure 16.5–1*PERIODIC, TYPE=2D option.16.5–3ABAQUS Version 6.1 Module:ID:Printed on:

Page 168

*IMPEDANCE8. X-component of the direction cosine of the majo r axis of the ellipse or prolate spheroid definingthe radiating surface. The components of

Page 169

*PERIODICzxy2dd-d-2dn = 2cabFigure 16.5–2*PERIODIC, TYPE=3D option.16.5–4ABAQUS Version 6.1 Module:ID:Printed on:

Page 170

*PERIODIC-2d-dd2dn = 2rzz = const periodic symm reference lineFigure 16.5–3*PERIODIC, TYPE=ZDIR option.16.5–5ABAQUS Version 6.1 Module:ID:Printed on:

Page 172

*PERMEABILITY16.6*PERMEABILITY: D efine permeability for pore fluid flow.This option is used to define permeability for pore fluid flow in problems involvin

Page 173

*PERMEABILITYData lines to define fully saturated isotropic permeability (TYPE=ISOTROPIC):First line:1. k.(UnitsofLT−1.)2. Void ratio, e.3. Temperature

Page 174

*PERMEABILITY6. .7. Void ratio, e.8. Temperature,.Subsequent lines (only needed if the DEPENDENCIES parameter is specified):1. First field variable.2. S

Page 176 - MULLINS EFFECT

*PHYSICAL C ONSTANTS16.7*PHYSICAL CONSTANTS: Specify physical constants.This option is used to define physical constants necessary for an analysis; sin

Page 178

*PIEZOELECTRIC16.8*PIEZOELECTRIC: Specify piezoelectric material properties.This option is used to define the piezoelectric properties of a material.Pr

Page 180

*PIEZOELECTRIC2. .3..4..5..6..7..8..Third line:1. .2..3. Temperature,.4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.Subs

Page 181

*PIEZOELECTRIC3. .4..5..6..7..8..Third line:1. .2..3. Temperature,.4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.Subsequ

Page 183

*PIPE-SOIL INTERACTION16.9*PIPE-SOIL INTERACTION: Specify element properties for pipe-soil interactionelements.This option is used to define properties

Page 185

*PIPE-SOIL STIFFNESS16.10*PIPE-SOIL STIFFNESS: Define constitutive behavior for pipe-soil interactionelements.This option is used to d efine the constit

Page 186

*PIPE-SOIL STIFFNESSTYPESet TYPE=LINEAR (default) to define a lin ear constitutive model.Set TYPE=NONLINEAR to define a nonlinear constitutive m odel.Se

Page 187

*PIPE-SOIL STIFFNESS3. Temperature.4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.Subsequent lines (only needed if the DE

Page 188

*PIPE-SOIL STIFFNESS7. Second field variable.8. Third field variables.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater th

Page 189 - New Set

*PIPE-SOIL STIFFNESSSubsequent lines (only needed if the DEPENDENCIES parameter has a value greater than three):1. Fourth field variable.2. Etc., up to

Page 190

*IMPEDANCE PROPERTY9.2*IMPEDANCE PROPERTY: Define the impedance parameters for an acoustic mediumboundary.This option is used to define the proportional

Page 191

*PIPE-SOIL STIFFNESSData lines if the c onstitutive behavior is defined in user s ubroutine UMAT ( TYPE=USER):First line:1. Enter the data to be used a

Page 192

*PLANAR TEST DATA16.11*PLANAR TEST DATA: Used to provide planar test (or pure shear) data (compressionand/or tension).This option is used to provide p

Page 193

*PLANAR TEST DATAData lines to specify planar test data for hyperelasticity other than the Marlow model:First line:1. Nominal stress, .2. Nominal stra

Page 194 - Spherical

*PLANAR TEST DATA3. Nominal transverse strain, . Default is zero. Not needed if the POISSON parameter isspecifiedonthe*HYPERFOAM option.Repeat this dat

Page 196

*PLASTIC16.12*PLASTIC: Specify a metal plasticity model.This option is used to spe cify the plastic part of the material model for elastic-plastic mat

Page 197

*PLASTICOptional parameter for use with H ARDENING=ISOTROPIC:RATESet this param eter equal to the equivalent plastic strain rate,, for which this stre

Page 198

*PLASTICData lines for HARDENING=COMBINED w ith DATA TYPE=STAB ILIZED:First line:1. Yield stress.2. Plastic strain.3. Strain range.4. Temperature.5. F

Page 199

*PLASTIC2. Plastic strain.3. Temperature, if temperature dependent.Repeat this data line a maximum of two times to define linear kinematic hardening in

Page 200

*PLASTIC AXIAL16.13*PLASTIC AXIAL: Define plastic axial force for frame elements.This option can be used only in conjunction with the*FRAME SECTION opt

Page 201

*IMPEDANCE PROPERTYData lines to define an impedance using DATA=ADMITTANCE (default):First line:1. , the proportionality factor between pressure and di

Page 203

*PLASTIC M116.14*PLASTIC M1: Define the first plastic bending moment behavior for frame elements.This option can be used only in conjunction with the*FR

Page 205

*PLASTIC M216.15*PLASTIC M2: Define the second plastic bending moment behavior for frameelements.This option can be used only in conjunction with the*F

Page 207

*PLASTIC TORQUE16.16*PLASTIC TORQUE: Define the plastic torsional moment behavior for frameelements.This option can be used only in conjunction with th

Page 209

*POROUS BULK MODULI16.17*POROUS BULK MODULI: Define bulk moduli for soils and rocks.This option is used to define the bulk moduli of solid grains a nd a

Page 211

*POROUS ELASTIC16.18*POROUS ELASTIC: Specify elastic material properties for porous materials.This option is used to define the elastic parameters for

Page 212

*IMPERFECTION9.3*IMPERFECTION: Introduce geometric imperfections for postbuckling analysis.This option is used to introduce a geometric imperfection i

Page 213

*POROUS ELASTIC2. Etc., up to eight field variables per line.Repeat this set of data lines as often as necessary to define the dependence of the materia

Page 214

*POROUS FAILURE CRITERIA16.19*POROUS FAILURE CRITERIA: Define porous material failure crit eria for a*POROUSMETAL PLASTICITY mo del.This option is used

Page 216

*POROUS METAL PLASTICITY16.20*POROUS METAL PLASTICITY: Specify a porous metal plasticity model.This option is used to s pecify the porous part of the

Page 217

*POROUS METAL PLASTICITY6. Second field variable.7. Etc., up to four field variables.Subsequent lines (only needed if the DEPENDENCIES parameter has a v

Page 218

*POST OUTPUT16.21*POST OUTPUT: Postprocess for output from the restar t file.This option can be used only for postprocessing to recover additional prin

Page 220

*POTENTIAL16.22*POTENTIAL: Define an anisotropic yield/creep model.This option is used to define stress ratios for anisotropic yield and creep behavior.

Page 221

*POTENTIAL7. Temperature.8. First field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than one):1. Second fie

Page 222

*PREPRINT16.23*PREPRINT: Select printout for the analysis input file processor.This option is used to select the printout that will be obtained from th

Page 223

ABAQUS KeywordsReference ManualVolume IIVersion 6.6ABAQUS Version 6.1 Module:ID:Printed on:

Page 224

*IMPERFECTIONNSETSet this parameter equal to the node set to which the geometric imperfection values are to be applied.If this parameter is omitt ed,

Page 226

*PRESSURE PENETRATION16.24*PRESSURE PENETRATION: Specify pressure penetration loads with surface-basedcontact.This option is used to prescribe pressur

Page 227

*PRESSURE PENETRATIONOPSet OP=MOD (default) for existing pre ssure penetration loads to remain, with this option modifyingexisting pressure penetratio

Page 228

*PRESSURE STRESS16.25*PRESSURE STRESS: Specify equivalent pressure stress as a predefined field for amass diffusion analysis.This option can be used onl

Page 229

*PRESSURE STRESSare being reset to new values (not to initial conditions) via OP=NEW, the AMPLITUDE parameterdescribed above applies.Required paramete

Page 230 - Optional parameters:

*PRESSURE STRESSData lines to define pressures using the data line format:First line:1. Node set or node number. If a node set label is given, all node

Page 232

*PRESTRESS HOLD16.26*PRESTRESS HOLD: Keep rebar prestress constant du ring initial equilibriumsolution.This option is used within a*STATIC step (“Stat

Page 234

*PRE-TENSION SECTION16.27*PRE-TENSION SECTION: Associate a pre-tension node with a pre-tension section.This option is used to associate a pre-tension

Page 235 - 16. P, Q

*IMPERFECTION(X,Y,Z)Rectangular Cartesian(SYSTEM=R)(default)RθCylindrical(SYSTEM=C)(θ and φ are given in degrees)(R,θ,φ)θφSpherical(SYSTEM=S)ZYXYYZZXX

Page 236

*PRE-TENSION SECTIONIf the data line is omitted, ABAQUS/Standard will com pute an average normal to the pre-tensionsection for continuum elements. For

Page 237

*PRINT16.28*PRINT: Request or suppress output to the message file in an ABAQUS/Standardanalysis or to the status file in an ABAQUS/Explicit analysis.Thi

Page 238

*PRINTRESIDUALSet RESIDUAL=YES (default) if the output of equilibrium residuals is to be given during theequilibrium iterations. Set RESIDUAL=NO to su

Page 239

*PSD-DEFINITION16.29*PSD-DEFINITION: Define a cross-spectral density frequency function for randomresponse loading.This option is used to define a frequ

Page 240

*PSD-DEFINITIONSet TYPE=FORCE (default) if this frequency function is given directly in power units.Set TYPE=DB if this frequency function is defined i

Page 241

R17. RABAQUS Version 6.1 Module:ID:Printed on:

Page 243

*RADIATE17.1*RADIATE: Specify radiation conditions in heat transfer analyses.This option is used to apply radiation boundary conditions between a nonc

Page 244

*RADIATESet REGION TYPE=LAGRANGIAN (default) to apply the radiation conditi on to aLagrangian boundary region. The edge of a Lagrangian boundary regio

Page 245

*RADIATION FILE17.2*RADIATION FILE: Define results file requests for cavity radiation heat transfer.This option is used to write cavity radiation variab

Page 248

*RADIATION OUTPUT17.3*RADIATION OUTPUT: Define output database requests for cavity radiationvariables.This option is used to write cavity ra diation va

Page 249 - PERIODIC

*RADIATION O UTPUTData lines to request cavity radiation output:First line:1. Specify the identifying keys for the variables to be written to the outp

Page 250

*RADIATION PRINT17.4*RADIATION PRINT: Define print requests for cavity radiation heat transfer.This option is used to print tabula r output of cavity r

Page 251

*RADIATION PRINTData lines to request printed output:First line:1. Give the identifying keys for the variables to be printed in a table for this reque

Page 252

*RADIATION SYMMETRY17.5*RADIATION SYMMETRY: Define cavity symmetries for radiation heat transferanalysis.This option must precede the*CYCLIC,*PERIODIC,

Page 254

*RADIATION VIEWFACTOR17.6*RADIATION VIEWFACTOR: Control cavity radiation and viewfactor calculations.This option is used to control the calculation of

Page 255

*RADIATION VIEWFACTORSYMMETRYInclude this parameter to indicate the existence of radiation symmetries in the model. Thisparameter must be set equal to

Page 256

*RANDOM RESPONSE17.7*RANDOM RESPONSE: Calculate response to random loading.This option is used to give the linearized response of a model to random ex

Page 257

*IMPORT9.4*IMPORT: Impor t information from a previous ABAQUS/Explicit orABAQUS/Standard analysis.If this is an ABAQUS/Explicit analysi s, this option

Page 259

*RATE DEPENDENT17.8*RATE DEPENDENT: Define a rate-dependent viscoplastic model.This option can be used in conjunction with the*PLASTIC option (HARDENIN

Page 260

*RATE DEPENDENTData lines to define the overstress power law parameters (TYPE=POWER LAW):First line:1. D.2. n.3. Temperature.4. First field variable.5.

Page 261

*RATIOS17.9*RATIOS: Define anisotropic swelling.This option is used to specify ratios that define anisotropic swelling. The*RATIOS option can be used on

Page 262

*RATIOSSubsequent lines (only needed if the DEPENDENCIES parameter has a value greater than four):1. Fifth field variable.2. Etc., up to eight field var

Page 263

*REBAR17.10*REBAR: Define rebar as an element property.This option is used as an alternative method to define rebar as an element property in shells, me

Page 264

*REBAROptional parameters:GEOMETRYThis parameter is not meaningful for rebar in beams, axisymm etric shells, or axisymmetricmembranes, or for single r

Page 265

*REBAR21Local beamsection axesXX12RebarFigure 17.10–1 Rebar location in a beam section.Data lines to define isoparametric rebar in three-dimensional sh

Page 266

*REBAR3214Similar to edge 1 or 3Similar to edge 2 or 41 1-2 2 2-3 3 3-4 4 4-1 Edge Corner nodes422311physical spaceisoparametric spac

Page 267

*REBARData lines to define rebar in axisymmetric shell elements:First line:1. Element number or name of the element set that contains these rebar.2. Cr

Page 268

*IMPORTthe analysis is to be imported. If this param eter is omitted, the analysis is imported from the lastavailable interval of the specified step.IT

Page 269

*REBAR4. Orientation of rebar in degrees. See Figure 17.10–3.5. Fractional distance from the edge given below, f (ratio of the distance between the ed

Page 270

*REBAR5. Isoparametric direction (for three-dimensional elements only).In three-dimensional cases the fractional distances,and are given along the firs

Page 271

*REBAREdge Corner nodes 1 1-2 2 2-3 3 3-4 4 4-1 rebar layer BLA2L22143Is

Page 272

*REBAREdge Corner nodes 1 1-2 2 2-3 3 3-4 4 4-1 Isoparametric mapping of

Page 273

*REBAREdge Corner nodes 1 1-2 2 2-3 L22143Isoparametric mapping of element with rebar4321yxsingle r

Page 274

*REBARIsoparametric direction: 1 (parallel to the 1-2 edge of the element and intersecting face 1-4-8-5)Iso

Page 276

*REBAR LAYER17.11*REBAR LAYER: Define layers of reinforcement in membrane, shell, surface, andcontinuum elements.This option is used to define one or mu

Page 277

*REBAR LAYERORIENTATIONThis param eter is meaningful only for rebar in general shell, membrane, and surface elements. Setthis parameter equal to the n

Page 278

*REBAR LAYER9. Radius, , of the rebar defined with GEOMETRY=LIFT EQUATION. The value is theposition of the rebar in the uncured geometry, measured with

Page 279

*IMPORT CONTROLS9.5*IMPORT CONTROLS: Specify tolerances used in importing model and results data.This option is used to specify the tolerance for erro

Page 281

*REFLECTION17.12*REFLECTION: Define reflection symmetries for a cavity radiation heat transferanalysis.This option is used to define a cavity symmetry by

Page 282

*REFLECTIONData lines to define reflection of a three-dimensional cavity (TYPE=PLANE):First line:1. X-coordinate of point a (see Figure 17.12–2).2. Y-co

Page 283

*REFLECTIONZXabnYcFigure 17.12–2*REFLECTION, TYPE=PLANE option.17.12–3ABAQUS Version 6.1 Module:ID:Printed on:

Page 284

*REFLECTIONzrz = constsymmetry lineFigure 17.12–3*REFLECTION, TYPE=ZCONST option.17.12–4ABAQUS Version 6.1 Module:ID:Printed on:

Page 285

*RELEASE17.13*RELEASE: Release rotational degrees of freedom at one or both ends of a beamelement.This option is used to release a r otational degree

Page 287

*RESPONSE SPECTRUM17.14*RESPONSE SPECTRUM: Calculate the response based on user-supplied responsespectra.This option is used to calculate estimates of

Page 288

*RESPONSE SPECTRUM4. Z-direction cosine of this direction.5. Factor multiplying the magnitudes i n the response spectr um. Default is 1.0.Second line

Page 289

*RESTART17.15*RESTART: Save and reuse data and analysis results.WARNING: This option can create a ve ry large amount of data. The size is estimated by

Page 291

*RESTARTIf this parameter is omitted, the restart will begin at the end of the step specified on the STEPparameter.ITERATIONIf the new analysis is rest

Page 292

*RESTARTWhen the OVERLAY parameter is included, each increment w ritten overlays the previousincrement, if any, writ ten for the same step. If this pa

Page 293

*RESTARTOptional parameters if the W RITE parameter is used:NUMBER INTERVALSet this parameter equal to the number of intervals during the step at whic

Page 294

*RETAINED EIGENMODES17.16*RETAINED EIGENMODES: Select the modes to be retained in a substructuregeneration analysis.This option selects the modes to b

Page 296

*RETAINED NODAL DOFS17.17*RETAINED NODAL DOFS: Specify the degrees of freedom that are to be retained asexternal to a substructure.This option is used

Page 298

*RIGID BODY17.18*RIGID BODY: Define a set of elements as a rigid body and define rigid elementproperties.This option is used to bind a set of elements a

Page 299

*RIGID BODYPIN NSETSet this parameter equal to the name of a node set containing pin-type nodes to be assigned to therigid body. This parameter can be

Page 300

*RIGID BODYThere are no data lines associated with this option in an ABAQUS/Standard analysis.Data line for R2D2, RB2D2, and RB3D2 elements in an ABAQ

Page 301

*IMPORT ELSET9.6*IMPORT ELSET: Import element set definitions from a previou s ABAQUS/Explicit o rABAQUS/Standard analysis.This option is used to impor

Page 303

*RIGID SURFACE17.19*RIGID SURFACE: Define an analytical rigid surface.This option must be used when defining the seabed for three-dimensional drag chain

Page 304

*RIGID SURFACESet TYPE=CYLINDER to define a three-dimensional rigid surface by providing connectedline segments and then sweeping them along a specified

Page 305

*RIGID SURFACEThird line:1. The “word” START.2. Local x-coordinate of the starting point of the lin e segments.3. Local y-coordinate of the starting p

Page 306

*RIGID SURFACEData line to define a parabolic arc segment:1. The “word” PARAB.2. x-coordinate of the middle point along the parabolic arc.3. y-coordina

Page 307

*RIGID SURFACElocal rline segmentcircular arc segmentnablocal zStartnFigure 17.19–2*RIGID SURFACE, TYPE=REVOLUTION.17.19–5ABAQUS Version 6.1 Module:ID

Page 309

*ROTARY INERTIA17.20*ROTARY INERTIA: Define rigid body rotary iner tia.This option is used to define rigid body rotary inertia values associated with RO

Page 310 - PRE-TENSION SECTION

*ROTARY INERTIAIn large-displacem ent analysis (an ABAQU S/Explicit analysis or when the NLGEOMparameter is included on the*STEP option in an ABAQUS/S

Page 311

S18. SABAQUS Version 6.1 Module:ID:Printed on:

Page 314

*SECTION CONTROLS18.1*SECTION CONTROLS: Specify section controls.WARNING: Using values larger th an the default values for hourglass control canproduc

Page 315

*SECTION CONTROLSRequired parameter:NAMESet this parameter equal to a label that will be used to refer to the section control definition. Allsection co

Page 316

*SECTION CONTROLSABAQUS/Standard and ABAQUS/Explicit. Any data given on the data line will be ignored forthis case.Set HOUR GLASS=RELAX STIFFNESS (def

Page 317

*SECTION CONTROLSNO. For elements other than cohesive elements, connector elements, and elem ents with plane stressformulations the default value is 1

Page 318

*SECTION CONTROLS3. Scaling factor, , for the hourglass stiffness for use with the out-of-plane displacem ent degreeof freedom in small-strain shell e

Page 320

*SECTION FILE18.2*SECTION FILE: Define results file requests of accumulated quantities onuser-defined surface sections.This option is used to control out

Page 321

*SECTION FILEaverage rigid body m otion of the surface section. This parameter is relevant only if AXES=LOCALand the NLGEOM parameter is active in the

Page 322

*SECTION FILE2a3b1defined section2a1anchor pointanchor pointYYXXelements used todefine the section2-D and axisymmetric3-Ddefined sectionZFigure 18.2–1

Page 323

*IMPORT NSET9.7*IMPORT NSET: Import node set definitions from a previous ABAQUS/Explicit orABAQUS/Standard analysis.This option is used to im port node

Page 325

*SECTION ORIGIN18.3*SECTION ORIGIN: Define a meshed cross-section origin.This option is used in conjunction with the*BEAM SECTION GENERATE option to de

Page 327

*SECTION POINTS18.4*SECTION POINTS: Locate points in the beam section for which stress and strainoutput are required.This option is used as model data

Page 328

*SECTION POINTS4. Local -position of second section point.Continue giving coordinate pairs for as many points as needed. At most four pairs of points

Page 329

*SECTION PRINT18.5*SECTION PRINT: Define print requests of accumulated quantities on user-definedsurface sections.This option is used to provide tabular

Page 330

*SECTION PRINTaverage rigid body m otion of the surface section. This parameter is relevant only if AXES=LOCALand the NLGEOM parameter is active in th

Page 331

*SECTION PRINT2a3b1defined section2a1anchor pointanchor pointYYXXelements used todefine the section2-D and axisymmetric3-Ddefined sectionZFigure 18.5–

Page 333

*SELECT CYCLIC SYMMETRY MODES18.6*SELECT CYCLIC SYMMETRY MODES: Specify the cyclic symmetry modes in aneigenvalue analysis of a cyclic symmetric struc

Page 334 - 1. Fifth field variable

Trademarks and Legal N oticesCAUTIONARY NOTICE TO USERS:This manual is intended for qualified users who will e xercise sound engineering judgment and e

Page 337

*SELECT EIGENMODES18.7*SELECT EIGENMODES: Select the modes to be used in a modal dynamic analysis.This option selects the modes to be used in a dynami

Page 338

*SELECT EIGENMODESData lines if the GENERATE parameter is omitted and DEFINITION=MODE NUMBERS:First line:1. List of modes to be used.Repeat this data

Page 339

*SFILM18.8*SFILM: Define film coefficients and associated sink temperatures over a surface forheat transfer analysis.This option is used to provide film c

Page 340

*SFILMThe FILM AMPLITUDE parameter is ignored if a nonuniform film coefficient is defined inuser subroutine FILM or if a film coefficient is defined to be a

Page 341 - Orientation angle

*SFLOW18.9*SFLOW: Define seepage coefficients and associated sink pore pressures normal toa surface.This option is used to pr ovide seepage coefficients

Page 342

*SFLOWData lines to define drainage-only seepage:First line:1. Surface nam e.2. Seepage flow type label QD.3. Drainage-only seepage coefficient value,.(U

Page 343

*SHEAR CENTER18.10*SHEAR CENTER: Define the position of the shear center of a beam section.This option can be used only in conjunction with the*BEAM GE

Page 345

*SHEAR FAILURE18.11*SHEAR FAILURE: Specify a shear failure model and criterion.This option is used with the Mises or the Johnson-Cook plasticity model

Page 346

*INCIDENT WAVE9.8*INCIDENT WAVE: Define incident wave loading for a blast or scattering load on aboundary.The preferred interface for applying incident

Page 347

*SHEAR FAILUREData lines to define the failure strain in t abular form (TYPE=TABULAR):First line:1. Equivalent plastic strain at failure, .2. Rate of e

Page 348 - First line:

*SHEAR RETENTION18.12*SHEAR RETENTION: Define the reduction of the shear modulus associated withcrack surfaces in a*CONCRETE model as a function of the

Page 349

*SHEAR RETENTION7. Second field variable.8. Third field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than th

Page 350

*SHEAR TEST DATA18.13*SHEAR TEST DATA: Used to provide shear test data.This option can be used only in conjunction with the*VISCOELASTIC option. The*S

Page 352

*SHELL GENERAL SECTION18.14*SHELL GENERAL SECTION: D efine a general, arbitrary, elastic shell section.This option is used to define a general, arbitrar

Page 353 - REFLECTION

*SHELL GENERAL SECTIONcontrols,” Section 21.1.4 of the ABAQUS Analysis User’s Manual) or to be used in a subsequentABAQUS/Explicit import analysis.OFF

Page 354

*SHELL GENERAL SECTIONThe following parameters are optional, mutually exclusive, and used only if the section is notdefined by its g eneral stiffness o

Page 355

*SHELL GENERAL SECTIONOptional parameter for use when the MATERIAL, the COMPOSITE, and the USER parametersare omitted:DEPENDENCIESSet this parameter e

Page 356

*SHELL GENERAL SECTION3. , temperature for these values of Y and .4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.Subseque

Page 357

*INCIDENT WAVEPRESSURE AMPLITUDESet this parameter equal to the name of the amplitude curve defining the fluid pressure timehistory at the standoff poin

Page 359

*SHELL SECTION18.15*SHELL SECTION: Specify a shell cross-section.This option is used to specify a shell cross-section.Products: ABAQUS/Standard ABAQUS

Page 360

*SHELL SECTIONDENSITYSet this parameter equal to a mass per unit surface area of the shell.If this parameter is used, the mass of the s h ell includes

Page 361

*SHELL SECTIONIn ABAQUS/Standard the default is POISSON=0.5; in ABAQUS/Explicit the default isPOISSON=MATERIAL.STAC K DIRECTIONThis parameter is relev

Page 362

*SHELL SECTIONbe at least 3, except in a pure heat transfer analysis, where the number of integration pointscan be 1 for a constant temperature throug

Page 363

*SHELL TO SOLID COUPLING18.16*SHELL TO SOLID COUPLING: Define a surface-based coupling between a shelledge and a solid face.This surface-based option a

Page 364

*SHELL TO SOLID COUPLING2. The solid surface name.Repeat this data line as often as n ecessary to define all the surfaces forming the coupling definitio

Page 365

*SIMPEDANCE18.17*SIMPEDANCE: D efine impedances of acoustic surfaces.This option is used to provide surface impedance information or nonreflecting bound

Page 366

*SIMPEDANCEOptional parameter:OPSet OP=MOD (default) to modify existing impe dances or to define addi tional impedances.Set OP=NEW if all existing im p

Page 367 - for rigid

*SIMPLE SHEAR TEST DATA18.18*SIMPLE SHEAR TEST DATA: Used to provide simple shear test data.This option is used to provide simple shear test data. It

Page 368 - affects only the handling of

*INCIDENT WAVE FLUID PROPERTY9.9*INCIDENT WAVE FLUID PROPERTY: Define the fluid properties associated with anincident wave.The preferred interface for d

Page 370

*SLIDE LINE18.19*SLIDE LINE: Specify slide line surfaces on which deformable structures mayintera ct.This option is relevant only for slide line and t

Page 371

*SLIDE LINESMOOTHSet this parameter equal to the smoothing fraction, f, to round discontinuities between line segm entsof a slide line. The default is

Page 372

*SLOAD18.20*SLOAD: A pply loads to a substructure.This option is used to activate a substructure load case defined by the*SUBSTRUCTURE LOAD CASEoption.

Page 374

*SOILS18.21*SOILS: Effective stress analysis for fluid-filled porous media.This option is used to specify transient (consolidation) or steady-state resp

Page 375 - RIGID SURFACE

*SOILSFACTORSet this parameter equal to the damping factor to be used in the automatic damping algorithm(see “Solving nonlinear problems,” Section 7.1

Page 376

*SOILS5. The rate of change of pore pressure with time, used to define steady state: only needed ifEND=SS is chosen. When all n odal wetting liquid pre

Page 378 - First (and only) line:

*SOLID SECTION18.22*SOLID SECTION: Specify element properties for solid, infinite, acoustic, and trusselements.This option is us ed to define pro pertie

Page 380

*SOLID SECTIONRequired parameter for anisotropic materials optional parameter for isotropic materials:ORIENTATIONSet this param eter equal to the nam

Page 381

*SOLID SECTIONData line to define homogeneous solid elements, infinite elements, acoustic elements, or trusselements:First (and only) line:1. Enter any

Page 383

*SOLUBILITY18.23*SOLUBILITY: Specify solubility.This option is used to define the solubility for a material diffusing through a base material. It must

Page 385

*SOLUTION TECHNIQUE18.24*SOLUTION TECHNIQUE: Specify alternative solution methods.This option is used to specify the quasi-Newton m ethod instead of t

Page 386

*SOLUTION TECHNIQUEData line for TYPE=CONTACT ITERATIONS:First (and only) line:1. Correction factor on the maximum number of right-hand-side solutions

Page 387

*SOLVER CONTROLS18.25*SOLVER CONTROLS: Specify controls for the iterative linear solver.This option is used to set th e control parameters for the ite

Page 389

*SORPTION18.26*SORPTION: Define absorption and exsorption behavior.This option is used to define absorption and exsorption behaviors of a partially satu

Page 390

*INCIDENT WAVE INTERACTION9.10*INCIDENT WAVE INTERACTION: D efine incident wave loading for a blast orscattering load on a surface.This option is used

Page 391

*SORPTION3. . This value must lie in the range . The default is 0.01.4.. This value must lie in the range . The default is 0.01 plus a verysmall posit

Page 392

*SPECIFIC HEAT18.27*SPECIFIC HEAT: Define specific heat.This option is used to specify a material’s specific heat.Products: ABAQUS/Standard ABAQUS/Explic

Page 394

*SPECTRUM18.28*SPECTRUM: Define a response spectrum.This option is used to define a spectrum to be used in a*RESPONSE SPECTRUM analysis.Product: ABAQUS/

Page 395

*SPECTRUMDate lines to define a spectrum:First line:1. Magnitude of the spectrum.2. Frequency, in cycles per time, at which this magnitude is used.3. A

Page 396

*SPRING18.29*SPRING: Define spring behavior.This option is used to define the spring behavior for spring elements.In ABAQ US/Standard analyses it is als

Page 397

*SPRINGsystem. Set this parameter equal to the nam e of the*ORIENTATION definition (“Orientations,”Section 2.2.5 of the ABAQUS Analysis User’s Manual).

Page 398

*SPRING5. Second field variable.6. Etc.,uptofivefieldvariables.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than five):

Page 399

*SPRING2. For SPRING2 elements give the degree of freedom with which the springs are associated attheir second nodes.If the ORIENTATION parameter is i

Page 400

*SRADIATE18.30*SRADIATE: Specify surface radiation conditions in heat transfer analysis.This option is used to apply surface radiation boundary condit

Page 401

*INCIDENT WAVE INTERACTIONPRESSURE AMPLITUDESet this parameter equal to the name of the amplitude curve defining the fluid pressure timehistory at the s

Page 402

*SRADIATE4. Emissivity, .Repeat this data line as often as necessary to define radiation conditions for different surfaces.18.30–2ABAQUS Version 6.1 Mo

Page 403

*STATIC18.31*STATIC: Static stress/displacement analysis.This option is used to indicate that the step should be analyzed as a static load step.Produc

Page 404

*STATICby ABAQUS is not suitable. This parameter must be used in conjunction with the STABILIZEparameter and overrides the autom atic calculation of t

Page 405

*STATIC3. Minim um time increment allowed. O nly used for automatic time increm entation. IfABAQUS/Standard finds it needs a smaller time incre ment th

Page 407

*STEADY STATE CRITERIA18.32*STEADY STATE CRITERIA: Specify steady-state criteria for terminating aquasi-static uni-directional simulation.This option

Page 408

*STEADY STATE C RITERIA7. First direction cosine of force or torque norm output at the reference node.8. Second direction cosine of force or torque no

Page 409

*STEADY STATE DETECTION18.33*STEADY STATE DETECTION: Specify steady-state requirements for terminating aquasi-static uni-directional simulation.This o

Page 410

*STEADY STATE DETECTION3. Third direction cosine of primary direction.4. Global X- coordinate of a point on the cutting pla ne.5. Global Y-coordinate

Page 411

*STEADY STATE DYNAMICS18.34*STEADY STATE DYNAMICS: Steady-state dynamic response based on harmonicexcitation.This option is used to calculate the syst

Page 412

*INCIDENT WAVE INTERACTION PROPERTY9.11*INCIDENT WAVE INTERACTION PROPERTY: Define the geome tric data and fluidproperties describing an incident wave.T

Page 413

*STEADY STAT E DYNAMICSSet SUBSPACE PROJECTION=EIGENFREQUEN CY if the projections onto the modalsubspace of the dynamic equations are to be performed

Page 414

*STEADY STATE DYNAMICSData lines for a steady-state dynamics analysis:First line:1. Lower limit of frequency range or a single frequency, in cycles/ti

Page 416 - SHELL GENERAL SECTION

*STEADY STATE TRANSPORT18.35*STEADY STATE TRA NSPORT: Steady-state transport analysis.This option is used to indicate that the step should be analyzed

Page 417

*STEADY STATE TRANSPORTparameter and overrides the autom atic calculation of the dam ping factor based on a value of thedissipated energy fraction.INE

Page 418

*STEADY STATE TRANSPORTterminated. If this entry is zero, a default value of the smaller of the suggested initial timeincrement or 10−5times the total

Page 420

*STEP18.36*STEP: Begin a step.This option is used to begin each step definition. It must be followed by a procedure definition option.Products: ABAQUS/S

Page 421

*STEPCONVERT SDIThis parameter determines how severe discontinuities (such as contact changes) are accounted forduring nonlinear analysis.Set CONVERT

Page 422 - SHELL SECTION

*STEPNAMESet this parameter equal to a label that will be used to refer to the step on the output database. Stepnames in the same input file must be un

Page 424

*STEPBeginning a step in an ABAQUS/Explicit analysisReferences:•“Procedures: overview,” Section 6.1.1 of the ABAQUS Analysis User’s Manual• *END STEPO

Page 425

*SUBMODEL18.37*SUBMODEL: Specify driven boundary nodes in submodeling analysis.This option is used to specify the total list of “driven nodes” for a s

Page 426 - 2. The solid surface name

*SUBMODELEXTERIOR TOLERANCESet this parameter equal to the fraction of the average elem ent size in the global m odel by which adriven node of the sub

Page 427

*SUBSTRUCTURE COPY18.38*SUBSTRUCTURE COPY: Copy a substructure definition.This option is used to copy a substructu re definition from one library to ano

Page 429

*SUBSTRUCTURE DELETE18.39*SUBSTRUCTURE DELETE: Remove a substructure from the substructure library.This option is used to delete a substructure from a

Page 431

*SUBSTRUCTURE D IRECTORY18.40*SUBSTRUCTURE DIRECTORY: List information about the substructures on asubstructure library.This option is used to provide

Page 433

*SUBSTRUCTURE GENERATE18.41*SUBSTRUCTURE GENERATE: Substructure generation analysis.This option is used to indicate that the step should be analyzed a

Page 434

*INCIDENT WAVE PROPERTY9.12*INCIDENT WAVE PROPERTY: Define the geometric data describing an incidentwave .The preferred interface for defining the geome

Page 435

*SUBSTRUCTURE GENERATEPROPERTY EVALUATIONSet this parameter equal to the frequency at which to evaluate frequency-dependent propertiesfor viscoelastic

Page 436

*SUBSTRUCTURE LOAD CASE18.42*SUBSTRUCTURE LOAD CA SE: Begin the definition of a substructure load case.This option is used to begin the definition of a

Page 438

*SUBSTRUCTURE MATRIX OUTPUT18.43*SUBSTRUCTURE MATRIX OUTPUT: Write a substructure’s recovery matrix,reduced stiffness matrix, mass matrix, load case v

Page 439

*SUBSTRUCTURE MATRIX OUTPUTSet OUTPUT FILE=USER DEFINED to write the results to a user-specified file in theformat of the*USER ELEMENT, LINEAR option (“

Page 440 - SOLID SECTION

*SUBSTRUCTURE PAT H18.44*SUBSTRUCTURE PATH: Enter into a substructure to obtain output or return backfrom a previously entered substructure.This optio

Page 442

*SUBSTRUCTURE PROPERTY18.45*SUBSTRUCTURE PROPERTY: Translate, rotate, and/or reflect substructures.This option is used to define propertie s for a subst

Page 443

*SUBSTRUCTURE PROPERTY3. Value of the translation to be applied in the global Z-direction.Enter values of zero to apply a pure r otation.Second line:1

Page 444

*SUBSTRUCTURE PROPERTYData lines to translate, rotate, and reflect a substructure:First line:1. Value of the translation to be applied in the global X-

Page 445

ABAQUS Offices and RepresentativesABAQUS, Inc. Rising Sun Mills, 166 Valley Street, Providence, RI 02909–2499, Tel: +1 401 276 4400,Fax: +1 401 276 440

Page 446 - SOLUTION TECHNIQUE

*INCIDENT WAVE PROPERTY4. X-component of , the velocity of the incident wave standoff point.5. Y-com ponent of, the velocity of the incident wave stan

Page 447

*SUBSTRUCTURE PROPERTYθabθFigure 18.45–1 Substructure rotation.bcaFigure 18.45–2 Substructure reflection. Points a, b,andc cannot be colinear.18.45–4AB

Page 448

*SURFACE18.46*SURFACE: Define a surface or region in a model.This option is used to define surfaces for contact simulations, tie constraints, fasteners,

Page 449

*SURFACESet COMBINE=INTERSECTION to create a surface based on the intersection of two surfacesof the same type.Set COMBINE=DIFFERENCE to create a surf

Page 450 - Data line for TYPE=SCANNING:

*SURFACEfinite-sliding contact formulation in ABAQUS/Standard or the surface is used with the contact pairalgorithm in ABAQUS/Explicit. TRIM=YES has no

Page 451

*SURFACEData lines for C OMBINE=UNION:First line:1. List of surfaces.Repeat this data line as often as necessary. Up to 16 entr ies are allowed per li

Page 452

*SURFACE2. Face or edge identifier label (see “Defining element-based surfaces,” Section 2.3.2 of theABAQUS Analysis U ser’s Manual, for the face and ed

Page 453

*SURFACE3. Global Y-coordin ate or z-coordinate of the starting point of the line segments.Second and subsequent data lines define the various line, ci

Page 454

*SURFACE3. Local z-coordinate of the starting point of the line segment s.Third and subsequent data lines define the various line, circular, and parabo

Page 455

*SURFACEStartLine segmentLocal y-axiscLocal x-axisb annOutward normalCircular arc segmentLocal z-axisGeneratordirectionFigure 18.46–1*SURFACE, TYPE=CY

Page 456

*SURFACElocal rline segmentcircular arc segmentnablocal zStartnFigure 18.46–2*SURFACE, TYPE=REVOLUTION.18.46–9ABAQUS Version 6.1 Module:ID:Printed on:

Page 457

*INCIDENT WAVE REFLECTION9.13*INCIDENT WAVE REFLECTION: Define the reflection load on a surface caused byincident wave fields.This option is used to defin

Page 459

*SURFACE BEHAVIOR18.47*SURFACE BEHAVIOR: Define alternative pressure-overclosure relationships forcontact.This option is used to modify the default har

Page 460 - 4. Emissivity,

*SURFACE BEHAVIORABAQUS Analysis User’s Manual, for a discussion of the default penalty stiffness. You can specifyor modify the penalty stiffness on t

Page 461

*SURFACE BEHAVIORData line for PRESSURE-OVERCLOSURE=EXPONENTIAL:First (and only) line:1. Clearance at which the contact pressure is zero, (see Figure

Page 462

*SURFACE BEHAVIORRepeat this data line in ascend ing order of overclosure value as often as necessary to definethe overclosure as a function of pressur

Page 463

*SURFACE BEHAVIOR(pn,hn)(p3,h3)(p2,h2)(0,h1)Overclosure hPressure pClearance cFigure 18.47–3 Pressure-overclosure relationship defined in tabular form.

Page 465

*SURFACE FLAW18.48*SURFACE FLAW: Define geometry of surface flaws.This option is used with line spring elements to define the geometry of the part-throug

Page 467

*SURF ACE INTERACTION18.49*SURFACE INTERACTION: Define surface interaction properties.This option is used to create a surface interaction property defin

Page 469

*SURFACE INTERACTIONSet this parameter equal to the thickness of an interfacial layer between the contacting surfaces.The value can be positive or neg

Page 470 - STEADY STAT E DYNAMICS

*SURF ACE INTERACTIONSecond line (needed only if the PROPERTIES parameter is used):1. Enter the values of the surface interaction p roperties, eight p

Page 472

*SURF ACE PROPERTY18.50*SURFACE PROPERTY: Define surface properties for cavity radiation.This option is used to define surface properties for cavity rad

Page 474 - STEADY STATE TRANSPORT

*SURFACE PROPERTY ASSIGNMENT18.51*SURFACE PROPERTY ASSIGNMENT: Assign surface properties to a surface for thegeneral contact algorithm.This option is

Page 475

*SURFACE PROPERTY ASSIGNMENTData lines for PROPERTY=OFFSET FRACTION:First line:1. Surface name. If the surface name is omitted, a default surface that

Page 476

*SURFACE SECTION18.52*SURFACE SECTION: Specify section properties for surface elements.This option is used to specify a surface elem ent cross-section

Page 478

*SWELLING18.53*SWELLING: Specify time-dependent volumetric swelling.This option is used to specify time-dependent metal swelling for a material. Swell

Page 479

*INCLUDE9.14*INCLUDE: Reference an external file containing ABAQUS input data.This option is used to reference an external file containing a portion of

Page 480

*SWELLING2. Etc., up to eight field variables per line.Repeat this set of data lines as often as neces sary to define the dependence of volumetr ic swel

Page 481

*SYMMETRIC MODEL GENERATION18.54*SYMMETRIC MODEL GENERATION: Create a three-dimensional model from anaxisymmetric or partial three-dimensional model.T

Page 482

*SYMMETRIC MODEL GENERATIONOptional parameters:ELEMENT OFFSETSet this parameter equal to an integer to define the offset for element numbering. When th

Page 483

*SYMMETRIC MODEL GENERATIONSecond line:1. Segment angle, (in degrees), of the original three-dim ensional sector. .2. Number of three-dimensional repe

Page 484

*SYMMETRIC MODEL GENERATION2. Angular scaling factor in the circumferential direction with respect to the original sector. Thedefault is 1.0.Repeat th

Page 485

*SYMMETRIC MODEL GENERATIONSecond line:1. X-coordinate of point c.2. Y-coordinate of point c.3. Z-coordinate of point c.Data lines if the REVOLVE para

Page 486

*SYMMETRIC MODEL GENERATIONbaθyxzFigure 18.54–1 Revolving a single three-dimensional repetitivesector to create a periodic structure.bzcrazZYXθreferen

Page 487

*SYMMETRIC MODEL GENERATION875463123 + n7 + n6 + n5 + n4 + n1 + n2 + n8 + nabreflection lineFigure 18.54–3 Reflecting a three-dimensional model through

Page 488

*SYMMETRIC MODEL GENERATION587463122 + n6 + n7 + n8 + n1 + n4 + n5 + nabcreflection plane3 + nFigure 18.54–4 Reflecting a three-dimensional model throu

Page 489

*SYMMETRIC RESULTS TRANSFER18.55*SYMMETRIC RESULTS TR ANSFER: Import results from an axisymmetric or partialthree-dimensional analysis.This option is

Page 491

*SYMMETRIC RESULTS TRANSFERSet UNBALANCED STRESS=RAMP if the stress unbalance is to be resolved linearly overthe step.There are no data lines associat

Page 492

*SYSTEM18.56*SYSTEM: Specify a local coordinate system in which to define nodes.This option is used to define nodes by accepting coordinates relative to

Page 493

*SYSTEMZYXXYZ111(local)(global)abcFigure 18.56–1 Local coordinate system.18.56–2ABAQUS Version 6.1 Module:ID:Printed on:

Page 494 - SUBSTRUCTURE MATRIX OUTPUT

T19. TABAQUS Version 6.1 Module:ID:Printed on:

Page 496

*TEMPERATURE19.1*TEMPERATURE: Specify temperature as a predefined field.This option is used to specify tem perature as a predefined field during an analys

Page 497

*TEMPERATUREapply. Rather, the AMPLITUDE parameter given on the*STEP option governs the behaviorin an ABAQUS/Standard analysis, and the temperatures a

Page 498

*TEMPERATUREESTEPSet this parameter equal to the step num ber (of the analysis whose results or output database fileis being used as input to this opti

Page 499

*TEMPERATURE2. Reference temperature value. If the AMPLITUDE parameter is present, this value andsubsequent temperature values will be modified by the

Page 500

*TEMPERATUREData lines to define temperatures using user subroutine UTEMP:First line:1. Node set or node number.Repeat this data line as often as neces

Page 501

*INCREMENTATION OUTPUT9.15*INCREMENTATION OUTPUT: Define output database requests for timeincrementation data.This option is used to write incrementati

Page 503 - of any shell

*TENSILE FAILURE19.2*TENSILE FAILURE: Specify a tensile failure model and criterion .This option is used with t he Mises or the Johnson-Cook plasticit

Page 504

*TENSILE FAILURESet PRESSURE=DUCTILE to model the cas e where the pressure stress will be limited by thehydrostatic cutoff stress when the failure cri

Page 505

*TENSION STIFFENING19.3*TENSION STIFFENING: Define the retained tensile stress normal to a crack in a*CONCRETE model.This option is used to define the r

Page 506

*TENSION STIFFENING4. First field variable.5. Second field variable.6. Etc.,uptofivefieldvariables.The first point at each value of temperature must be a s

Page 507

*THERMAL EXPANSION19.4*THERMAL EXPANSION: Define the thermal expansion behavior of beams.This option c an be used onl y in conjunction with the*BEAM G

Page 509

*TIE19.5*TIE: Define surface-based tie and cyclic symmetry constraints or coupled acoustic-structural interactions.This option is used to impose tie co

Page 510

*TIEOptional parameters:ADJUSTSet ADJUST=YES (default) to move all tied nodes on the slave surface onto the m aster surface inthe initial configuration

Page 511

*TIME POINTS19.6*TIME POINTS: Specify time points at w hich data are written to the output databaseor restar t files, or specify time points in the loa

Page 513

*TIME POINTSData lines if the GENERATE parameter is om itted:First line:1. List of time po ints; the points must be arrange d in ascending order.Repea

Page 514 - Overclosure

*TORQUE19.7*TORQUE: Define the torsional behavior of beams.This option c an be used onl y in conjunction with the*BEAM G ENERAL SECTION,SECTION=NONLINE

Page 515

*TORQUESubsequent lines (only needed if the D EPENDENCIES parameter has a value greater than six):1. Seventh field variable.2. Etc., up to eight field v

Page 516

*TORQUE PRINT19.8*TORQUE PRINT: Print a summary of the total torque that can be transmitted acrossaxisymmetric slide lines.This option is used to obta

Page 518

*TRACER PARTICLE19.9*TRACER PARTICLE: Define tracer particles for tracking the location of and resultsat material points during a step.This option is u

Page 520

*TRANSFORM19.10*TRANSFORM: Specify a local coordinate system at nodes.This option is used to specify a local coordinate system for displacement and ro

Page 521

*TRANSFORMXYZY1Z1(global)baX1Figure 19.10–1 Cartesian transformation option.XYZXYZ1(global)ba11(radial)(axial)(tangential)Figure 19.10–2 Cylindrical t

Page 522

*TRANSFORMXYZ(global)abZ1 (meridional)Y1 (circumferential)X1 (radial)Figure 19.10–3 Spherical transformation option.19.10–3ABAQUS Version 6.1 Module:I

Page 523

*INELASTIC HEAT FRACTION9.16*INELASTIC H EAT FRACTION: Define the fraction of the rate of inelastic dissipationthat appears as a heat source.This optio

Page 525

*TRANSPORT VELOCITY19.11*TRANSPORT VELOCITY: Specify angular transport velocity.This option is used to define the angular velocity of material transpor

Page 526

*TRANSPORT VELOCITYGENERATION option. For a rigid body of type REVOLUTION the rotation is assum ed to beabout the axis of revolution of the body.Repea

Page 527

*TRANSVERSE SHEAR STIFFNESS19.12*TRANSVERSE SHEAR STIFFNESS: Define transverse shear stiffness for beams andshells.This option must be used in conjunct

Page 528

*TRANSVERSE SHEAR STIFFNESSData line when used with all other beam sections:First (and only) line:1. Value of the shear stiffness of the section.2. Va

Page 529

*TRIAXIAL TEST DATA19.13*TRIAXIAL TEST DATA: Provide triaxial test data.This option is required if some or all of the m aterial parameters that define

Page 531

*TRS19.14*TRS: Used to define temperature-time shift for time history viscoelastic analysis.This option can be used only in conjunction with the*VISCOE

Page 533

U20. UABAQUS Version 6.1 Module:ID:Printed on:

Page 536 - SYMMETRIC MODEL GENERATION

*UEL PROPERTY20.1*UEL PROPERTY: Define proper ty values to be used with a user element type.This option is used to define the properties of a user elem

Page 538

*UNDEX CH ARGE PROPERTY20.2*UNDEX CHARGE PROPERTY: Define an UNDEX charge for incident w aves.This option defines parameters that create the tim e histo

Page 539

*UNDEX CHARGE PROPERTY2. Maximum number of time steps for the bubble simulation, . The bubble amplitudesimulation ceases when the number of steps reac

Page 540

*UNIAXIAL TEST DATA20.3*UNIAXIAL TEST DATA: Used to provide uniaxial test data (compression and/ortension).This option is used to provide uniaxial tes

Page 541

*UNIAXIAL TEST DATAData lines to specify uniaxial test data for the Marlow model:First line:1. Nominal stress, .2. Nominal strain,.3. Nominal lateral

Page 542

*UNIAXIAL TEST DATAUsing uniaxial test data to define the Mullins effect material modelReferences:•“Mullins effect in rubberlike materials,” Section 17

Page 544

*USER DEFINED FIELD20.4*USER DEFINED FIELD: Redefine field variables at a material point.This material option is used to allow the values of field variab

Page 545

*INERTIA RELIEF9.17*INERTIA RELIEF: Apply inertia-based load balancing.This option is used to apply inertia-based loads on a free or partially constra

Page 547

*USER ELEMENT20.5*USER ELEMENT: Introduce a user-defined element type .This option is used to introduce a linear or a general user-defined elem ent. It

Page 548

*USER ELEMENTRequired parameters if the FILE parameter is included:OLD ELEMENTSet this parameter equal to the elem ent number that was assigned to the

Page 549 - 1. Node set or node number

*USER ELEMENTSecond line if the a ctive degrees of freedom are different at subsequent nodes:1. Enter the position in the connectivity list (node posi

Page 550

*USER ELEMENTPROPERTIESSet this parameter equal to the number of real (floating point) property values needed as data in usersubroutine UEL to define su

Page 551

*USER MATERIAL20.6*USER MATERIAL: Define material constants for use in subroutine UMAT, UMATHT,orVUMAT.This option is used to input material constants

Page 552

*USER MATERIALInclude this parameter if the material stiffness matrix, , is not symmetric or whena thermal constitutive model is used andis not symmet

Page 553

*USER OUTPUT VARIABLES20.7*USER OUTPUT VARIABLES: Specify number of user variables.This option is used to allow ABAQ US to allocate space at each mate

Page 555

V21. VABAQUS Version 6.1 Module:ID:Printed on:

Page 556

PrefaceThis section lists various resources that are available for help with using ABAQUS.SupportABAQUS, Inc., offers both technical engineering suppo

Page 557

*INERTIA RELIEFThere are no data lines when the FIXED or REMOVE parameters are specified.9.17–2ABAQUS Version 6.1 Module:ID:Printed on:

Page 559

*VARIABLE MASS SCALING21.1*VARIABLE MASS SCALING: Specify mass scaling during the step.This option is used to specify mass sc aling during the step fo

Page 560

*VARIABLE MASS SCALINGRequired, mutually exclusive parameters if the D T parameter or the TYPE=ROLLING parameteris used:FREQUENCYSet this parameter eq

Page 561

*VIEWFACTOR OUTPUT21.2*VIEWFACTOR OUTPUT: Write radiation viewfactors to the results file in cavityradiation heat transfer analysis.This option is used

Page 563

*VISCO21.3*VISCO: Transient, static, stress/displacement analysis with time-dependentmaterial respons e (creep, swelling, and viscoelasticity).This op

Page 564

*VISCOSTABILIZEInclude this parameter to use automatic stabilization if the problem is e xpected to be u nstable dueto local instabilities. Set this p

Page 565

*VISCOELASTIC21.4*VISCOELASTIC: Specify dissipative behavior for use with e lasticity.This option is used to generalize a material’s elastic response

Page 566

*VISCOELASTICTIMEUse this parameter to choose the time domain definition. In this case the material’s elasticity mustbe defined using the*ELASTIC, the*H

Page 567

*VISCOELASTICOptional parameters when test data are given to define time domain viscoelasticity withTIME=CREEP TEST DATA or TIME=RELAXATION TEST DATA o

Page 568

*INITIAL CONDITIONS9.18*INITIAL CONDITIONS: Specify initial conditions for the model.This option is used to prescribe initial conditions for an analys

Page 569

*VISCOELASTIC3. Frequency, f, in cycles per time.4. Uniaxial nominal strain (defines the level of uniaxial preload).Repeat this data line as often as n

Page 570

*VISCOELASTIC4. Closure (defines the level of preload).Repeat this data line as often as necessary to define the effective thickness-direction gasket lo

Page 572

*VISCOUS21.5*VISCOUS: Specify viscous material properties for the two-layer viscoplastic model.This option is used to d efine the viscous properties fo

Page 573

*VISCOUS7. Second field variable.8. Third field variable.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than three):1.

Page 574 - TRANSVERSE SHEAR STIFFNESS

*VOID NUCLEATION21.6*VOID NUCLEATION: Define the nucleation of voids in a porous material.This option is used to model the nucleation of voids in a por

Page 576

*VOLUMETRIC TEST DATA21.7*VOLUMETRIC TEST DATA: Provide volumetric test data.This option can be used only in conjunction with the*HYPERELASTIC option,

Page 577

*VOLUMETRIC TEST DATASee “Using the DEPENDENCIES parameter to define field variable dependence” in “Material datadefinition,” Section 16.1.2 of the ABAQU

Page 578

*VOLUMETRIC TEST DATAViscoelastic material modelReferences:•“Time domain viscoelasticity,” Section 17.7.1 of the ABAQUS Analysis User’s Manual• *VISCO

Page 579

*INITIAL CONDITIONSSet TYPE=PORE PRESSURE to give initial pore fluid pressures for a coupled pore fluiddiffusion/stress analysis in ABAQUS/Standard.Set

Page 581

W, X, Y , Z22. W,X,Y,ZABAQUS Version 6.1 Module:ID:Printed on:

Page 583

*WAVE22.1*WAVE: Define gravity waves for use in immersed structure calculations.This option is used to define gravity waves for use in applying loads.Pr

Page 584 - Fourth line:

*WAVEOptional parameters for TYPE=GRIDDED:MINIMUMSet this parameter equal to the elevation below which point the structure is fully immersed forall ti

Page 585

*WAVE5. y-direction cosine defining the direction of the vector (the direction of travel for this wavecomponent). This component is not neede d in two-

Page 587

*WIND22.2*WIND: Define wind velocity profile for wind loading.Thisoptionisusedtodefineawindvelocityprofileforuseinapplyingloads.Product: ABAQUS/AquaType:

Page 588

About ABAQUS, Inc.Founded in 1978, ABAQUS, Inc. is the world's leading provider of advanced Finite Element Analysis software and services that ar

Page 589

*INITIAL CONDITIONSSet TYPE=TEMPERATURE to give initial temperatures. The STEP and INC parameters canbe used in conjunction with the FILE parameter to

Page 590

*INITIAL CONDITIONSINPUTSet this parameter equal to the name of the alternate input file containing the data lines for thisoption. See “Input syntax ru

Page 591

*INITIAL CONDITIONSSECTION POINTSThis param eter is used only with TYPE=PLASTIC STRAIN, TY PE=STRESS, andTYPE=HARDENING to specify plastic strains, st

Page 592

*INITIAL CONDITIONS7. X-coordinate of the second reference point.8. Y-coordinate of the second reference point.9. Z-coordinate of the second reference

Page 593

*INITIAL CONDITIONSto read for a ny node is based on the maximum number of field varia ble values for all the nodes inthe model. These trailing initial

Page 594

*INITIAL CONDITIONSData lines for TYPE=HARDENING, REBAR:First line:1. Element number or elem ent set label.2. Rebar name. If this field is left blank,

Page 595

*INITIAL CONDITIONS2. Initial m ass flow rate per unit area in the x-direction or total initial mass flow rate in the cross-section for one-dimensional

Page 596

CONTENTSContents — Volume IA*ACOUSTIC FLOW VELOCITY 1.1*ACOUSTIC MEDIUM 1.2*ACOUSTIC WAVE FORMULATION 1.3*ADAPTIVE MESH 1.4*ADAPTIVE MESH CONSTRAINT 1

Page 597

*INITIAL CONDITIONS5. Value of third plastic strain component, .Give the initial plastic strain components as defi ned for this element type in Part VI

Page 598

*INITIAL CONDITIONSNo data lines are required for TYPE=PRESSURE STRESS, FILE=file, STEP=step, INC=inc.Data lines for TYPE=RATIO if the USER parameter

Page 599

*INITIAL CONDITIONSData lines for TYPE=RELATIVE DENSITY:First line:1. Node set or node number.2. Initial relative density.Repeat this d ata line as of

Page 600

*INITIAL CONDITIONSSubsequent lines (only needed if more than seven solution-dependent state variables exist in the model):1. Value of eighth solution

Page 601

*INITIAL CONDITIONS2. Initial specific energy.Repeat this data line as often as necessar y to define initial specific energy in various elements or eleme

Page 602

*INITIAL CONDITIONS3. Vertical coordinate corresponding to the above value.4. Second value of vertical component of (effective) stress.5. Vertical coo

Page 603

*INITIAL CONDITIONSNo data lines are required for TYPE=STRESS, USER.Data lines for TYPE=TEMPERATURE:First line:1. Node set or node number.2. First ini

Page 604

*INITIAL CONDITIONSData lines for TYPE=VELOCITY:First line:1. Node set or node number.2. Degree of freedom.3. Value of initial velocity.Repeat this da

Page 606

*INSTANCE9.19*INSTANCE: Begin an instance definition.This option is used to instance a part within an assembly. It must be used in conjunction with the

Page 607

CONTENTSC*C ADDED MASS 3.1*CAPACITY 3.2*CAP CREEP 3.3*CAP HARDENING 3.4*CAP PLASTICITY 3.5*CAST IRON C OMPRESSION HARDENING 3.6*CAST IRON PLASTICITY 3

Page 608 - VISCOELASTIC

*INSTANCEData line to translate an instance that is not imported from a previous analysis:First (and only) line:1. Value of the translation to be appl

Page 609

*INSTANCEθabθFigure 9.19–1 Rotation of an instance.9.19–3ABAQUS Version 6.1 Module:ID:Printed on:

Page 611

*INTEGRATED OUTPUT9.20*INTEGRATED OUTPUT: Specify variables integrated over a surface to be written tothe output database.This option is used to write

Page 612

*INTEGRATED OUTPUTData lines to request integrated output:First line:1. Specify the identifying keys for the output variables to be written to the out

Page 613

*INTEGRATED OUTPUT SECTION9.21*INTEGRATED OUTPUT SECTION: D efine an integrated output section over a surfacewith a local coordinate system and a refer

Page 614

*INTEGRATED OUTPUT SECTIONSet POSITION=CENTER if the reference node is to be relocated from the user-defined locationto the center of the surface in th

Page 615

*INTERACTION OUTPUT9.22*INTERACTION OUTPU T: Specify spot weld interaction variables to be writte n to theoutput database .This option is used to writ

Page 617

*INTERACTION PRINT9.23*INTERACTION PRINT: Define print requests for spot weld interaction variables.This option is used to provide tabular pri nted out

Page 618

CONTENTS*CONNECTOR LOAD 3.41*CONNECTOR LOCK 3.42*CONNECTOR MOTION 3.43*CONNECTOR PLASTICITY 3.44*CONNECTOR POTENTIAL 3.45*CONNECTOR SECTION 3.46*CONNE

Page 619

*INTERACTION PRINTData lines to request spot weld interaction variable output to the data file:First line:1. Give the identifying keys for the variable

Page 620

*INTERFACE9.24*INTERFACE: Define properties for contact elements.This option is used to assign elem ent section properties to ITT-, ISL-, IRS-, and ASI

Page 621 - 22. W,X,Y,Z

*INTERFACEData line for ASI1 ele ments:First (and only) line:1. Area associated with the elements.Enter the direction cosine, in ter ms of the global

Page 622

*ITS9.25*ITS: D efine properties for IT S elements.This option is used to define the properties for ITS-type elements. The*DASHPOT,*FRICTION, and*SPRING

Page 623

*ITS2. Diameter of the hole in the support plate.3. X-direction cosine of the axis of the tube.4. Y-direction cosine of the axis of the tube.5. Z-dire

Page 624

J10. JABAQUS Version 6.1 Module:ID:Printed on:

Page 626

*JOINT10.1*JOINT: Define proper ties for JOINTC elements.This option is used to define the properties for JOINTC elements. T he*DASHPOT and*SPRING optio

Page 628 - About SIMULIA

*JOINT EL ASTICITY10.2*JOINT ELASTICITY: Specify elas tic properties for elastic-plastic joint eleme nts.This option is used to define linear elastic m

Commentaires sur ces manuels

Pas de commentaire